

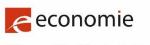
The Belgian KWINTE reference area.

Part A: a bathymetric reference area for quality control of shallow water multibeam echo sounders

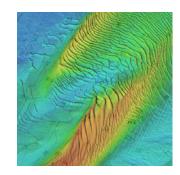
Samuel Deleu¹, Marc Roche², Kris Vanparys¹, Koen Degrendele², Florian Barette² & Johan Verstraeten¹

Flemish Hydrography, Maritime and Coastal Services, Belgium
 Continental Shelf Service, FPS Economy, Belgium

AGENTSCHAP MARITIEME DIENSTVERLENING en KUST



Presentation Flemish Hydrography and Continental Shelf Service


AGENTSCHAP
MARITIEME
DIENSTVERLENING en
KUST

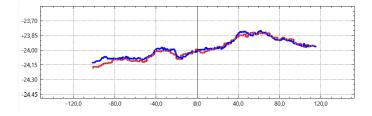
https://www.agentschapmdk.be/en/fle mish-hydrography

FPS Economy, S.M.E.s, Self-employed and Energy

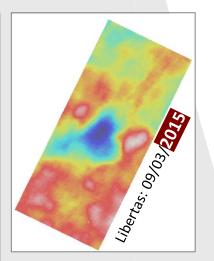
https://economie.fgov.be/en/themes/enterprises/specific-sectors/offshore-sand-and-gravel

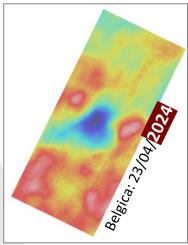
The Flemish Hydrography carries out hydrographic measurements in the Belgian part of the North Sea and the Scheldt river and also locates wrecks. All this information is presented in the official sea maps, ENC's and ECS's. Changes are published in the Notices to Mariners.

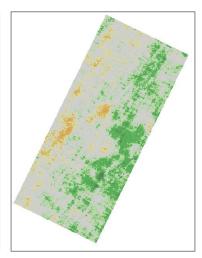
The team also collects hydrometeorological data, used for tide tables, current atlases and the coastal weather forecast.


Flemish Hydrography is a member of the International Hydrographic Organization (IHO). The Continental Shelf Service of the FPS Economy, SMEs, Self-employed and Energy is responsible for sand and gravel mining in the Belgian part of the North Sea.

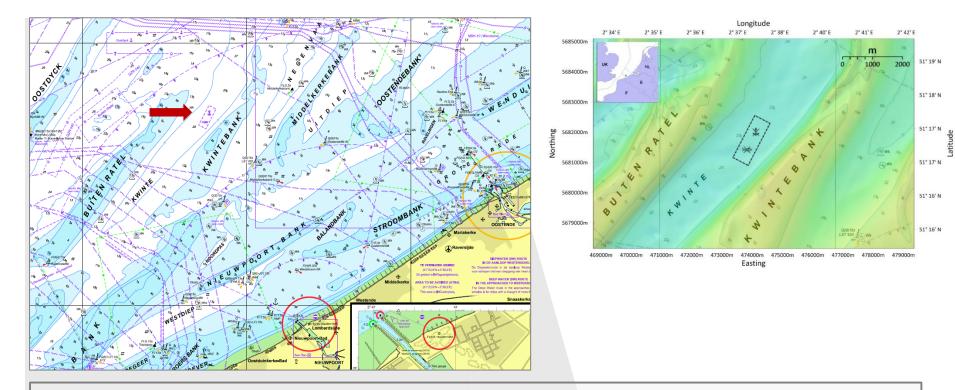
The service's main tasks are:


- issuing permits;
- managing mining concessions;
- control of sand mining;
- updating the associated legislation;
- •the management of the "Budget for Sand extraction" (the former Fund for Sand Extraction).




Introduction

- Origin: control area for COPCO during sand extraction phase on Kwintebank
- Need: for own and contractor's survey => acceptation tests and control areas
- History: after several surveys area seems very stable, both for bathy and for BS



- This led to the common project by Flemish Hydrography (Belgian Hydrographic Office) and COPCO (Continental Shelf Service)
- => paper in Hydro International
- => short presentations at Geohab
- => website with all the info

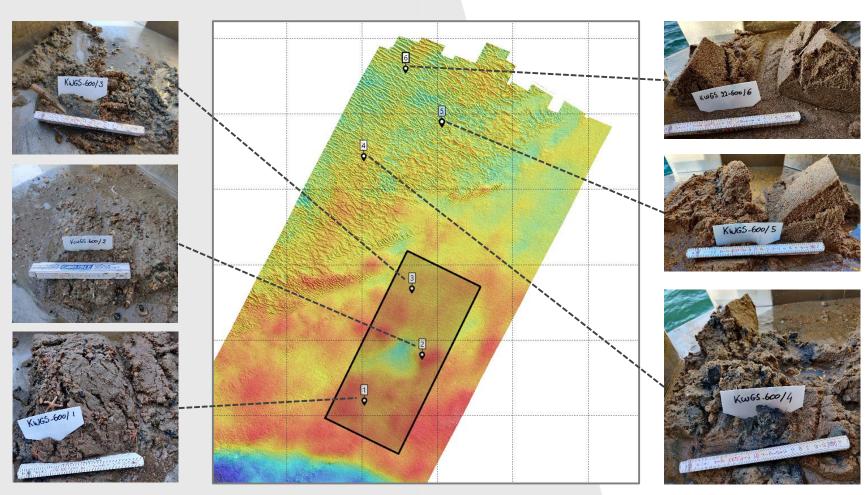
www.afdelingkust.be/en/acoustic-reference-area-kwinte

Where?

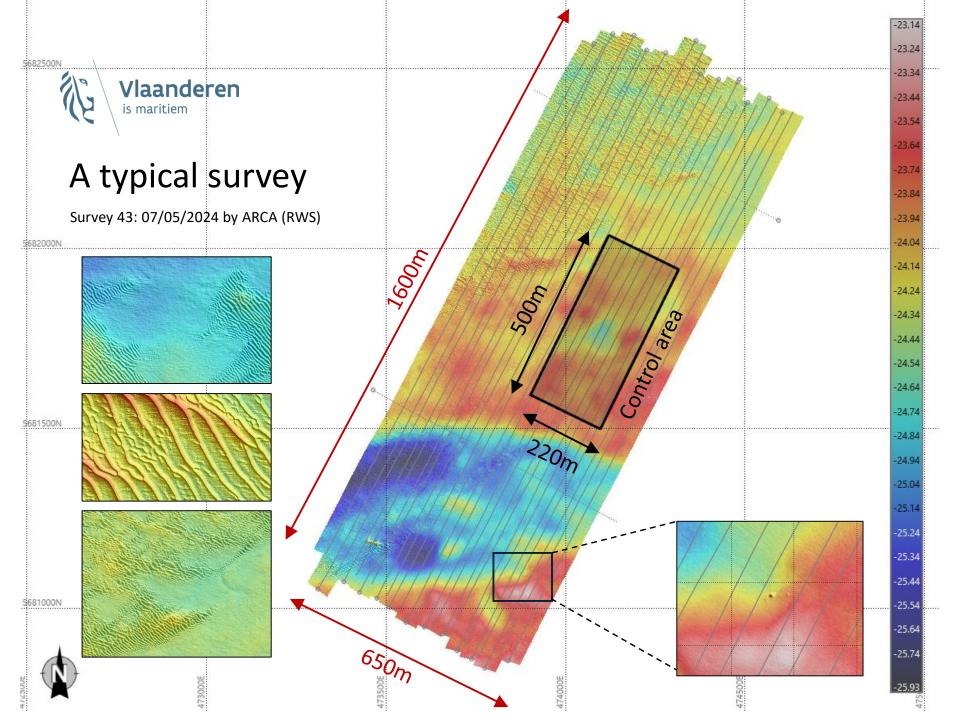
17km from the coast in the gulley between two sandbanks with a length of 1,5km and a width of 650m, and with depths ranging from 23-26m LAT

What?

Small area which is defined in the Marine Spatial Plan 2020-2026 and in the new Spatial Plan coming as an area on the Belgian Continental Shelf where seabed disturbing activities are prohibited


Why?

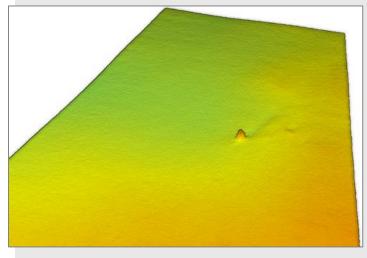
Validate the bathymetry and backscatter values of MBES measurements by any ship on a well known area

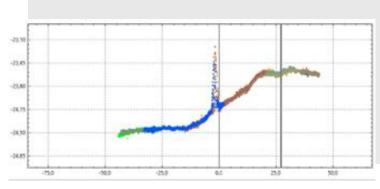


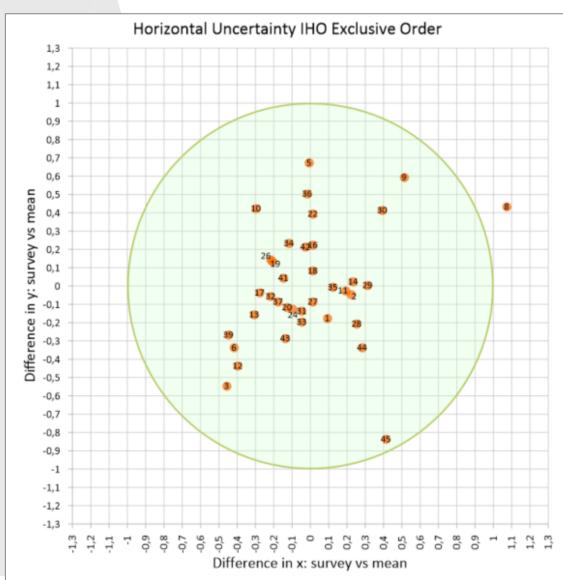
Seabed

Small to medium dunes in NW part, SE part relatively flat. Mostly gravely sand and sandy gravel with shells

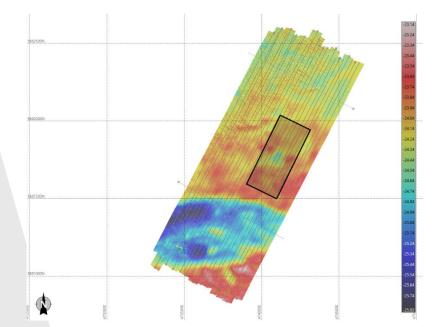
Van Veen samples taken by COPCO


IHO Exclusive Order


From the S-44 Edition 6.1.0 IHO Standards for Hydrographic Surveys


	Criteria	Exclusive Order	
Ar	ea description (Generally)	Areas where there is strict minimum underkeel clearance and manoeuvrability criteria	For this project we use the Matrix Reference (brown codes)
	Depth <u>THU</u> [m] + [% of Depth]	1 m *Ba10	See next slide
	Depth TVU (a) [m] and (b)	a = 0.15 m b = 0.0075 *Bc12, Bd8	$TVU_{max}(d) = \sqrt{a^2 + (b \times d)^2}$ Mean depth in control area is -24m LAT => TVU _{max} = 0,234m
	ature Detection [m] or [% of Depth]	Cubic features > 0.5 m	Specified in the survey requirements
F	eature Search [%]	200%	Specified in the survey requirements
	Bathymetric Coverage [%]	200% *Bh12	Specified in the survey requirements

Position check (~THU)





Bathymetry check (~TVU)

1 Libertas

2 Libertas

3 Simon Stevin

4 Simon Stevin

5 Simon Stevin

6 Ter Streep

7 Simon Stevin

8 Sirius

9 Simon Stevin

10 Ter Streep

11 Ter Streep

12 Sirius

13 Patriot

14 Geosurveyor XI

15 Geosurveyor VI

16 Patriot

17 Geosurveyor XVI

18 Simon Stevin

19 Geosurveyor VIII

20 Geoocean IV

21 Geosurveyor VIII

22 Geosurveyor X

23 Geosurveyor XI

24 Geosurveyor XVI

25 Geosurveyor IV

26 Geosurveyor VI 27 Zr. Ms. Luymes

28 Anais

29 Belgica

30 Jan Breydel

31 Simon Stevin

32 Aquaway

33 Ter Streep

34 Zr. Ms. Snellius

35 Belgica

36 Sirius

37 Geosurveyor XVII

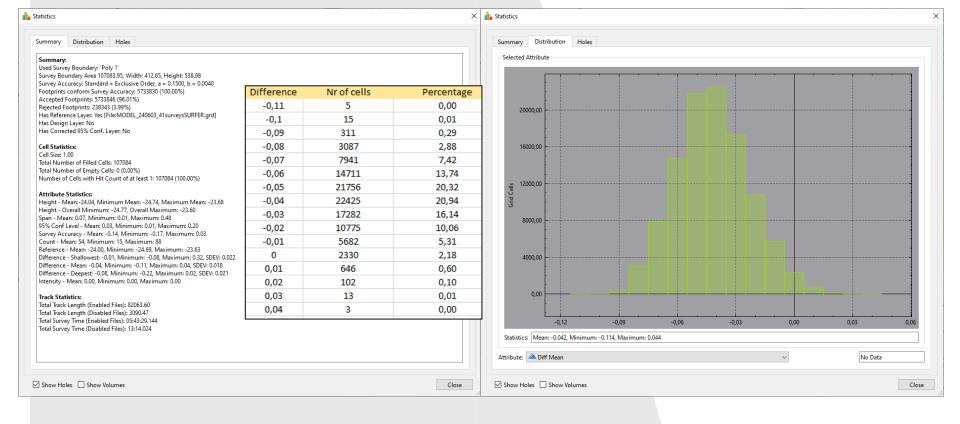
38 Belgica

39 Belgica

40 Sirius

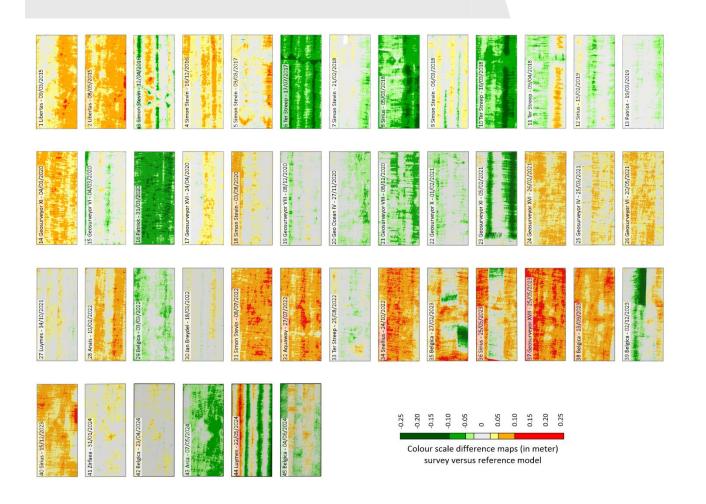
41 Zirfaea

42 Belgica

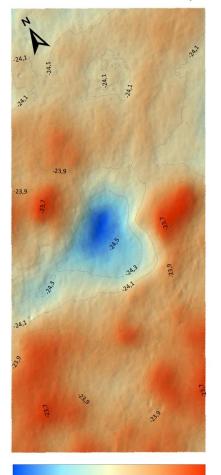

43 Arca

44 Zr. Ms. Luymes

45 Belgica

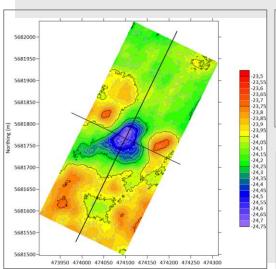


Statistics

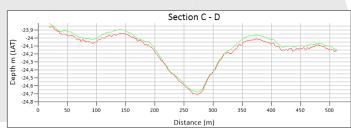


Difference maps

Model of the control area based on 45 surveys



-24,6 -24,5 -24,4 -24,3 -24,2 -24,1 -24 -23,9 -23,8 -23,7 Depth in m LAT



Report

- Bathymetry and backscatter (see presentation Marc) are analysed
- Survey settings and statistics
- Results and comparison with model

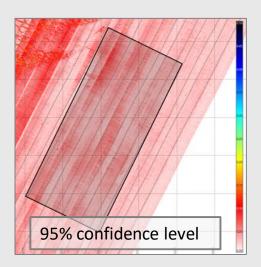
economie

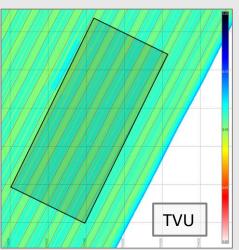
Ī

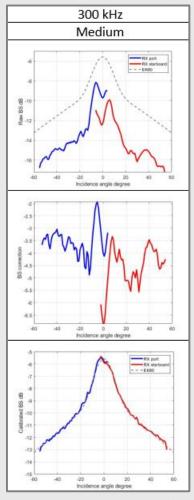
REPORT HYDROGRAPHIC SURVEY KWINTE ZONE

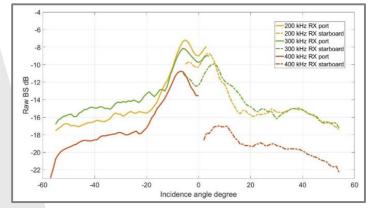
Institute	Hydrographic Service, Royal Netherlands Navy
Vessel	Zr. Ms. Luymes
Survey date	22/05/2024
Sequence number	43
Acquired data	multibeam bathymetry, multibeam backscatter

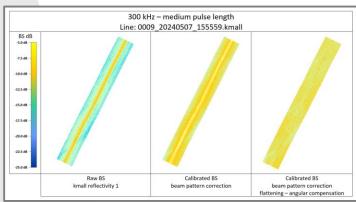
Zr. Ms. Luymes


Checked by:


Flemish Hydrography (VH) Continental Shelf Service (COPCO)


1

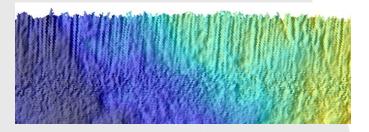

Examples from the report



	200	200 kHz		300 kHz		400 kHz	
	RX port	RX starboard	RX port	RX starboard	RX port	RX starboard	
Very shallow	-3.5	-2.6	-1.7	-5.7	-5.6	-10.5	
Medium	-3.9	-3.1	-3.4	-4.2	-7.5	-9.0	
Deeper	-2.8	-2.6	-2.0	-2.2	-6.1	-7.4	

b) Multibeam controlezone KWINTE

Indien de test over de sluisdrempel in Zeebrugge succesvol werd afgerond dient een referentiezone "KWINTE" ingemeten te worden die wordt begrensd door volgende ETRS89, UTM3IN coördinaten. De zone dient met multibeam opgemeten te worden.

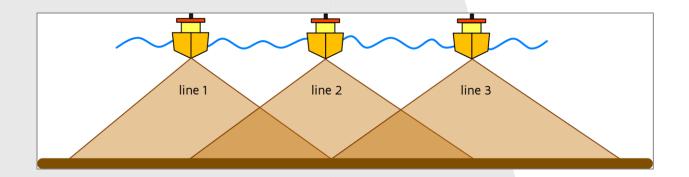

Bestek 16EH/24/01

Dossiernummer 224.000

Example: short extract of Acceptation Tests description in Tender

Benefits of the reference area

- Contractors have to pass the test => more certainty for the client but also for the contractor
- Research Institutes and Governmental Institutes can get certainty about their multibeam setup
- The more accepted surveys, the more robust the model
- It is a natural reference area => reflecting real surveys in the field



- ⇒ overall: all participants reflect on their setup and will understand all what can affect the data quality
- ⇒ Errors (random or systematic) will come out: MRU artefacts, GNSS problems, spikes, shifts in z, wrong vessel setup, ...

How to participate (1)

- Sail your lines in NNE-SSW orientation (typically 4 to 6 hours of work)
- Try to achieve a hit count of 5 points/m²
- After processing, a grid of 1x1m should be filled
- Determine your line spacing so an overlap of 50% is achieved => 200% coverage
- Refer towards LAT (see next slide) and survey with RTK (preferably) or PPP

How to participate (2)

Please provide us with:

- Your dataset as a Qimera or Autoclean project
- Raw and if possible processed data in one of the following formats: *.db,
 *.bwxraw, *.s7k, *.kmall/all, *.gsf
- Metadata: date, database setup, dimensional survey, used equipment (multibeam, MRU/INS, GNSS, SVP), weather info
- Used multibeam settings (frequency, power, gain, mode, ...) => see also presentation Marc
- Used RTK methodology to have tour results in LAT. We can help you with this by providing our LAT model for Qinsy or Navaq

Please email all of this to: <u>samuel.deleu@mow.vlaanderen.be</u> and marc.roche@economie.fgov.be

Participants

Vaartuig	MBES systeem	Uitvoerder	Datum
Libertas	Reson Seabat 8125	Eurosense	9/ 03/ 2015
Libertas	R2Sonic 2024	Eurosense	8/ 05/ 2015
Smon Stevin	Kongsberg EM2040	00P00	12/04/2016
Smon Stevin	Kongsberg EM2040	00P00	6/ 12/ 2016
Smon Stevin	Kongsberg EM2040D	COPCO	9/ 03/ 2017
Ter Streep	Kongsberg EM2040cDS	VH	17/ 07/ 2017
Smon Stevin	Kongsberg EM2040D	COPCO	21/02/2018
grius	Kongsberg EM2040D	VH	5/ 03/ 2018
Smon Stevin	Kongsberg EM2040D	00P00	6/ 03/ 2018
Ter Streep	Kongsberg EM2040cDS	VH	16/03/2018
Ter Streep	Kongsberg EM2040cDS	VH	9/ 04/ 2018
Sirius	Kongsberg EM2040D	VH	13/ 02/ 2019
Patriot	Reson T50R	Enviros	19/ 03/ 2019
Geosurveyor XI	Kongsberg EM2040cD	GEOxyz	4/ 03/ 2020
Geosurveyor VI	R2Sonic 2024	GEOxyz	4/ 03/ 2020
Patriot	Reson T50R	Enviros	31/03/2020
Geosurveyor XVI	Kongsberg EM2040cD	GEOxyz	24/ 04/ 2020
Smon Stevin	Kongsberg EM2040D	VLIZ	3/ 08/ 2020
Geosurveyor VIII	R2Sonic 2024	GEOxyz	19/ 08/ 2020
GeooceanIV	Kongsberg EM2040D	GEOxyz	27/ 11/ 2020
Geosurveyor VIII	R2Sonic 2024	GEOxyz	8/ 12/ 2020
Geosurveyor X	R2Sonic 2024	GEOxyz	1/02/2021
Geosurveyor XI	Kongsberg EM2040cD	GEOxyz	5/ 02/ 2021
Geosurveyor XVI	Kongsberg EM2040cD	GEOxyz	26/ 02/ 2021
Geosurveyor IV	Norbit WBMS	GEOxyz	25/ 03/ 2021
Geosurveyor VI	R2Sonic 2024	GEOxyz	20/ 05/ 2021
Luymes	Kongsberg EM2040D-04	Dienst der Hydrografie	14/ 10/ 2021
Anais	Norbit WBMS	Enviros	10/02/2022
Belgica	KongsbergEV2040D-04	00P00	3/ 03/ 2022
Jan Breydel	Kongsberg EM2040C	VH	18/ 03/ 2022
Smon Stevin	Kongsberg EM2040D-04	VLIZ	8/ 07/ 2022
Aquaway	Norbit WBMS	Enviros	27/ 07/ 2022
Ter Streep	Kongsberg EM2040cDS	VH	25/ 08/ 2022
Snellius	Kongsberg EM2040D-04	Dienst der Hydrografie	24/ 10/ 2022
Belgica	Kongsberg EM2040D-04	COPCO	27/ 02/ 2023
Sirius	Kongsberg EM2040D-04	VH	25/ 05/ 2023
GeosurveyorXVII	R2Sonic 2024	GEOxyz	25/ 05/ 2023
Belgica	Kongsberg EM2040D-04	COPCO	23/ 09/ 2023
Belgica	Kongsberg EM2040D-04	COPCO	2/12/2023
Sirius	Kongsberg EM2040D-04	VH	15/ 12/ 2023
Zirfaea	Kongsberg EM2040cD	RWS	31/01/2024
Belgica	Kongsberg EW2040D-04	COPCO	23/ 04/ 2024
Arca	Kongsberg EM2040cD	RWS	7/ 05/ 2024
Luymes	Kongsberg EM2040D-04	Dienst der Hydrografie	22/ 05/ 2024
Belgica	Kongsberg EV2040D-04	COPCO	4/ 06/ 2024

To conclude

An invitation to institutes/companies to be part of the project by carrying out a survey in the Kwinte zone. The data will be carefully analyzed and you will receive a report that gives you certainty about the multibeam setup used

It will give the participant a good reference of data quality and can be used as a testimonial of the proven setup in other projects

Many thanks to the participating institutes/companies!

And now over to Marc Roche and Part B on the Backscatter

