

Institute of Photogrammetry and Remote Sensing

Methods for geometric modelling of refraction in photo-bathymetry

Christian Mulsow, 2024/11/7

Content

- **1. Introduction and Motivation**
- **2. Modeling the Refraction - Ray Tracing**
- **3. Integration in a Bundle Adjustment – Image Orientation**
- **4. Underwater DTM extraction**
- **5. Options and Limitations**
- **6. Strategies for nonplanar water surfaces (waves)**
- **7. Conclusion**

Introduction and Motivation

Photogrammetric measurement tasks in and through water -> from easy to difficult

Camera in a housing (dome port – easy, flat port \sim)

Camera outside water flat water surface

Through calm water Through moving water

Camera outside water wavy water surface

Introduction and Motivation

"practical" Approaches to compensate the refraction effects

- -**Data processing in standard software (without refraction compensation)**
- -**Option 1 : Linear regression - reference vs. measured heights**
- -**Option 2 : Correction factor calculated from camera setup (flying height, focal length, base length**

Easy to implement, but low accuracy and reliability! –> Better: Geometric Modelling of refraction effects!

DRESDEN

concept

Standard pinhole-camera model without refraction

Standard collinearity equations system:

$$
x' = x'_0 + z' \frac{r_{11}(X_P - X_0) + r_{21}(Y_P - X_0) + r_{31}(Z_P - X_0)}{r_{13}(X_P - X_0) + r_{23}(Y_P - X_0) + r_{33}(Z_P - X_0)} + \Delta x'
$$

$$
y' = y'_0 + z' \frac{r_{12}(X_P - X_0) + r_{22}(Y_P - X_0) + r_{32}(Z_P - X_0)}{r_{13}(X_P - X_0) + r_{23}(Y_P - X_0) + r_{33}(Z_P - X_0)} + \Delta y'
$$

Compensation of the refraction effect by 'straightening' the image ray Possible strategies:

Standard pinhole-camera model with refraction – universal model First published by Kotowski, 1987

$$
x' = x'_0 + z'\frac{r_{11}(X_{P1} - X_0) + r_{21}(Y_{P1} - X_0) + r_{31}(Z_{P1} - X_0)}{r_{13}(X_{P1} - X_0) + r_{23}(Y_{P1} - X_0) + r_{33}(Z_{P1} - X_0)} + \Delta x'
$$

$$
y' = y'_0 + z'\frac{r_{12}(X_{P1} - X_0) + r_{22}(Y_{P1} - X_0) + r_{32}(Z_{P1} - X_0)}{r_{13}(X_{P1} - X_0) + r_{23}(Y_{P1} - X_0) + r_{33}(Z_{P1} - X_0)} + \Delta y'
$$

DRESDEN

concept

Task: Find the piercing point P1 - Raytracing!

Raytracing

- **Forward ray tracing (FRT)**
- •**From image to object space** •**For forward intersection**

DRESDEN

concept

Raytracing

Backward ray tracing (BRT)

Problem:

No initial direction of ray path !

Consequence:

No direct computing of ray path possible

Sequential computing impossible

Start values necessary

Solution:

Iterative solution of whole ray path

Different Approaches:

- •Kotowski BRT
- •Alternating forward ray tracing (AFRT)
- •Minimum Distance Forward Raytracing (MDFRT)
- •Scattershot (Brute Force)

(see Mulsow et. al, 2014, 'A universal approach for geometric modelling in underwater stereo image processing')

Backward Raytracing – different approaches - example

Minimum Distance Forward Ray Tracing (MDFRT)

- • *Changing the start direction in order to minimize the distance of the image ray to object point P*
- •*Based on forward ray tracing*
- •*Conditional equation: distance = 0*

Input Data:

- •*Object Point Coordinates P & P₀*
- •*Surface model (parametric)*
- •*Initial image ray direction*
- •*initial surface point P₁ (From FRT)*
- •*Surface Normal in initial surface point P₁ (From FRT)*
- •*Refracted image ray direction (From FRT)*

DRESDEN

concept

Backward Raytracing – Integration in a Bundle Adjustment

Extended collinearity equations system:

$$
x' = x'_0 + z' \frac{r_1(X_1 + X_0) + r_2(X_1 + X_0) + r_3(X_1 + X_0)}{r_1(X_1 + X_0) + r_2(X_1 + X_0) + r_3(X_1 + X_0)} + \Delta x'
$$

$$
y' = y'_0 + z' \frac{r_1(X_1 + X_0) + r_2(X_1 + X_0) + r_3(X_1 + X_0)}{r_1(X_1 + X_0) + r_2(X_1 + X_0) + r_3(X_1 + X_0)}
$$

Linearization only possible via numerical differentiation !High computational effort!

Coordinates of the interface point **P1** from Backward Raytracing :

$$
(X_{1\,ij}^{\,l}, Y_{1\,ij}^{\,l}, Z_{1\,ij}^{\,l}) = f_{P_1}(X_{0\,j}, Y_{0\,j}, Z_{0\,j}, X_i, Y_i, Z_i, \boldsymbol{a}^{\,l}, \boldsymbol{n}^{\,l}) \qquad \text{in which:}
$$

 $=$ point index

- $=$ image index
- $k =$ camera index
- $t =$ interface index
- l = set of interface indices t
- a^1 = set of interface parameters a_t
- n^{\prime} = set of relative refractive indices n_{t}

Integration in a Bundle Adjustment

Object invariant interface

- 1. $\,$ Ray tracing -> calculation of $\rm P_t$
- 2. $\,$ Introducing $\mathrm{P_{t}}$ in collinearity equation

Interface parameters given in object coordinate system !

Normally the case with airborne photobathymetry !

DRESDEN

concept

Integration in a Bundle Adjustment

Bundle invariant interface

- 1. Transformation of object point P in to the camera coordinate system
- 1. Ray tracing inside the camera system (port) \rightarrow calculation of P_{t*}
- 2. Transformation of P_{t*} back in to object coordinate system \rightarrow P_t
- 3. Introducing P_{t} in collinearity equation

Interface parameters of the port (e.g. flat or dome) given in camera coordinate system !

Normally the case with underwater photogrammetry !

Multimedia Bundle Adjustment - Image Orientation - through water – example

- •UAV Ascending Technologies (AscTec) Falcon 8 octocopter
- •Sony NEX-7 camera (24 Mp, 20mm, F/2.8 optical lens)
- •300 images/ 100m flying height/GSD 2cm/ area 400x400 m²
- •overlap 75% along track, 65% across track
- •Orientations from UAV's GNSS/IMU, 8 control points on land (5/5/10cm)
- •70% water coverage

Adjustment

- •fixed camera calibration parameters
- •underwater-points together with onshore points
- • Fixed water surface modelled as a plane **Result:**

Multimedia Bundle Adjustment - pro's and con's

Options

- Highly versatile
- •All model parameters can be treated as unknowns (...camera orientations, shape of the water surface!)
- • Constraints between the unknowns (e.g. parallelism of planes, membership of an object point to a surface etc.) can be defined

Limitations

- Combinations of unknown parameters may lead to singularity (e.g. all refractive indices are treated as unknowns)
- • Stability of the adjustment depends on the imaging configuration and the distribution of control points (as usual…)
- •Multi-media geometry requires a partly different view on the problem (new …)

Examples *-* **Autobahnsee, Augsburg, Bavaria, Germany**

- \bullet IGI DigiCAM 100 camera, Orientations from GNSS/IMU
- •4 strips in two heights (450m/610) 61/65 images
- •90% overlap along track, 60% across track
- •10 control points (RTK GNSS)
- •No underwater control points!

For evaluation: topo-bathymetrical laser scanner (Riegl VQ-880-G)

Classification of land and water points – criteria point height

Matched points Land O Water

Processing of Stereo images

- \bullet Finding point pairs
- •Matching
- •Simple forward intersection
- • Labelling of underwater points based on height
- • 3D-coordinates via multimedia forward intersection
- •Fusion of point-clouds
- •Filtering
- •TIN

Examples Autobahnsee, Augsburg, Bavaria, Germany

Photo-DTM

Photo vs. Laser[m]

Examples *-* **Lake Schottensee at Flüelapass**

- •UAV Ascending Technologies (AscTec) Falcon 8 octocopter
- •Sony NEX-7 camera (24 Mp, 20mm, F/2.8 optical lens)
- •300 images
- •100m flying height
- •GSD 2cm
- •75% overlap along track, 65% across track
- \bullet Orientations from UAV's GNSS/IMU
- •8 control points - accuracy 5/5/10 cm in X/Y/Z (on land)
- \bullet no underwater control points!
- \bullet 15 check points measured on lake bottom (accuracy 10/10/10 cm in X/Y/Z) - not signalized

DRESDEN

concept

Examples - Lake Schottensee

RMS at underwater check points (13):

 $\mathsf{Z}_{\mathsf{Actual}}\text{-}\mathsf{Z}_{\mathsf{Reference}}$ = 11.8cm

Inner accuracy $(Z) = 3.5$ cm

- without refraction compensation
- with refraction compensation

Water

With refraction compensation Without refraction compensation

Conclusion and Outlook

- •Refraction compensation is necessary and possible
- •DEM Quality depends on imaging quality
- •Actually limited to quite water surface (water surface modelled as flat horizontal plane)

Future

- •Automatic shore line extraction
- •Imaging through wavy surfaces

Conclusion and Outlook

Strategies for wavy water – taking image sequences

Complex method:

• Spatio-temporal Modelling of water surface

Conclusion and Outlook

Strategies for wavy water – taking image sequences

Simple Method:

•pixel-wise median-filtering \rightarrow Result: 'corrected' image corresponding to a image taken through flat calm water

Christian Mulsow christian.mulsow@tu-dresden.de

