

Lab experiment for simultaneous reconstruction of water surface and bottom with a synchronized camera rig

Hydro 2024 Laure-Anne Gueguen, TU Wien Gottfried Mandlburger, TU Wien

• 07.11.2024

PhotoBathyWave project, collaboration between TU Dresden and TU Wien

- Goal:
 - Developing a generic approach for multimedia photogrammetry through a dynamic water surface
- <u>Issue:</u> Optical rays are refracted at the air-water interface, according to Snell's law
 - Need to know the shape of the water surface at time T to obtain an accurate model of the topography

Data acquisition set-up for simultaneous capture of water surface and water bottom

Objectives:

- is it possible to capture and reconstruct the water surface ?
- initial set-up of a more ambitious experiment: the survey of inland waters using cameras embedded on a squad of UAVs
- A water tank in a lab with a printed topography to obtain a non-flat bottom
- The set-up is static, with at least:
 - 2 nadir looking cameras for bottom mapping
 - 2 oblique looking cameras for water surface reconstruction
- A dynamic sea state will be generated using a pump

Figure: Data acquisition set-up with multiple static cameras over a water tank. The nadir cameras deliver the bottom via multimedia photogrammetry whereas the nadir cameras are only used for water surface reconstruction.

Description

- Borrowed a full multi-camera setup and lenses from IfP Stuttgart
- One Arduino triggers the cameras simultaneously every 1sec
- A concrete plate with stones to create topography
- Oblique-looking cameras on the same side to capture more common features

Preliminary steps

Calibration

- Distortion, interior and exterior orientations are estimated during processing by Metashape
- Georeferencing of the model in the lab coordinate system

Ground truth

 Reference model for the topography (without water) to serve as validation

Acquisition plan

- Gather comprehensive datasets and try to identify an optimal configuration
- Variation of acquisition parameters:
 - Exposure time
 - Aperture
 - Gamma correction (contrast enhancement)
 - Gain
 - Lighting conditions
- What can we achieve using a standard Structurefrom-Motion approach (Metashape) ?
- First results \rightarrow <u>transparency of water</u> is an issue

Acquisition plan

- From insights gained from first rounds of data acquisition:
 - Addition of turbidity
 - Maximisation of specular reflection on the water surface
- From ~3 to ~40 surface points, maximum is 77 points

Feature detection and matching using deep learning

- Reached a limit with Metashape
- Deep learning for feature detection and matching
- → Hloc toolbox (Hierarchical Localization available on Github)
 Extractors: Superpoint, disk, sift
 Matchers: Superglue, Lightglue, NN (nearest neighbour)

		Feature extractors			
		Superpoint_aachen	Superpoint_inloc	Superpoint_max	
Feature matchers	Superglue	331 tie points	643 tie points	694 tie points	-
	Superglue_fast	330 tie points	649 tie points	692 tie points	
	Lightglue	323 tie points	666 tie points	708 tie points	

Pair of images: 54 tie points with Metashape

Feature detection and matching using deep learning

Feature detection and matching using deep learning

- Import into Metashape via Colmap
- In Metashape:
 - Apply exterior and orientation + distortion
 - (previously estimated)

Source: Blake and Brelstaff, 1988

Error due to specular reflection

- Need to assess the accuracy of the matches
- → Reprojection error of the surface tie points

Metashape tie points:

Mean error	0.29 pixels		
Median error	0.19 pixels		
Std	0.37 pixels		
Threshold highest 10%	0.63 pixels		

Superpoint + lightglue (after manual filtering of outliers):

Mean error	0.83 pixels	
Median error	0.66 pixels	
Std	0.64 pixels	
Threshold highest 10%	1.76 pixels	

Processing – Oblique images

Hydro 2024 | 07.11.2024

Processing – Oblique images

From sparse point cloud : average of Z coordinates -> mean water height

Mean water height = 1.8075m

Evaluation dataset: 4 images from grid of nadir cameras, with flat water surface

Difference with ground truth: Mean: 66 mm - Median: 66 mm - Std: 3 mm

Hydro 2024 | 07.11.2024

Verification – Mean water height

- Application of refraction correction to the models:
 - Refractive index used for water : 1.33
 - Single value for mean water height

 the water surface is approximated
 as a planar surface at the height
 previously estimated

After refraction correction

Blue: ground truth – Magenta: reconstructed topography – White: topography corrected by refraction

Refractive index of water

	Refractive idx =	Refractive idx =	Refractive idx =
	1.33	1.335	1.34
Water height =	Mean = 2.3mm	Mean = 1.4mm	Mean = 0.4mm
1.806m	Median = 2.5mm	Median = 1.5mm	Median = 0.6mm
Water height =	Mean = 2.0mm	Mean = 1.0mm	Mean = 0mm
1.807m	Median = 2.1mm	Median = 1.2mm	Median = 0.2mm
Water height =	Mean = 1.8mm	Mean = 0.8mm	Mean = -0.1mm
1.8075m	Median = 2.0mm	Median = 1.0mm	Median = 0.0mm
Water height =	Mean = 1.6mm	Mean = 0.6mm	Mean = -0.3mm
1.808m	Median = 1.8mm	Median = 0.8mm	Median = -0.1mm
Water height =	Mean = 1.3mm	Mean = 0.3mm	Mean = -0.7mm
1.809m	Median = 1.4mm	Median = 0.5mm	Median = -0.5mm

Diff each column: -1 mm

High impact of the refractive index on the results

 \rightarrow need a proper estimation

 $n_w = 1.338 + 4 \times 10^{-5} (486 - \lambda + 0.003d + 50S - T)$

- Wavelength: 520nm (estimated)
- Depth: 0.15m (estimated)
- Temperature: 22.2°C (measured)
- Salinity: 0% (measured)

Estimation : $n_{water} = 1,33575$

 \rightarrow Difference with ground truth: <u>mean = 0.7mm</u>, <u>median = 0.9mm</u>

Diff each row: -0.3 mm

Future activities

Time synchronisation \rightarrow aiming for 2-3 ms exposure time

Conclusion

- Various processing workflows to obtain tie points on the surface
- Estimation of the mean water height
- Limitation of Structure-from-Motion

Future activities & Outlook:

- Focus on time synchronisation of cameras
- Deepening assessment of tie points
- Using specular reflection to retrieve surface normal vectors

Save the date

- ISPRS WG II/7 Workshop on Underwater Photogrammetry
- Jointly organised by ISPRS and DGPF
- Venue: TU Wien
- Date: July, 08-11, 2025
- Program
 - Invited lectures
 - Call for papers (in preparation)
 - Tutorials
 - Demonstrations (Water lab TU Wien)
 - Excursion (pre Alpine Pielach River)
 - Social events (Ice breaker, conference dinner)

