USING AUVS FOR MEASURING SEDIMENTATION PROCESSES IN RESERVOIRS

HYDRO 2024 Rostock, Germany 5-7/11/2024 **Arnau Carrera Vinas**¹, Frederic M. Evers², Thomas Vonach¹ ¹Subdron GmbH, Austria

² Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Switzerland

UNDERWATER INSPECTION: TODAY'S CHALLENGES

MARITIME OPERATIONS REQUIRE REGULAR INSPECTION

Biofouling on ship hulls

€5,3m per ship per year in potential fuel over consumption due to biofouling

Structural integrity of critical infrastructure

1500km of quay wall in Netherlands alone needs monitoring

Security risks of foreign incoming vessels

60.000 vessels call EU ports annually, only 0,9% can be inspected

FIRST FULLY AUTONOMOUS UNDERWATER INSPECTION SYSTEM

VALUE PROPOSITION: FIRST AUTONOMOUS UNDERWATER INSPECTION

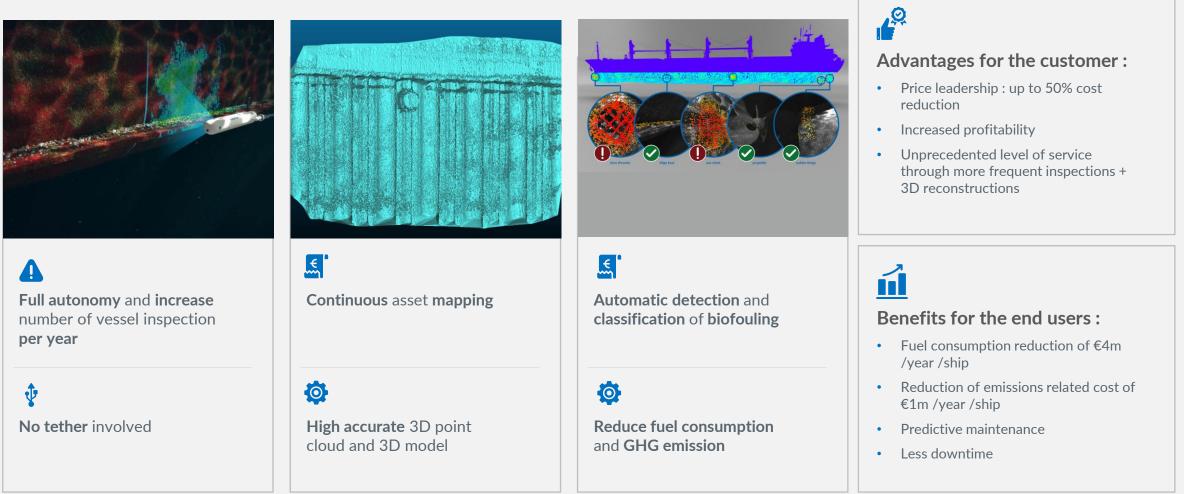
Reduction of **GHG** 833m of tons globally

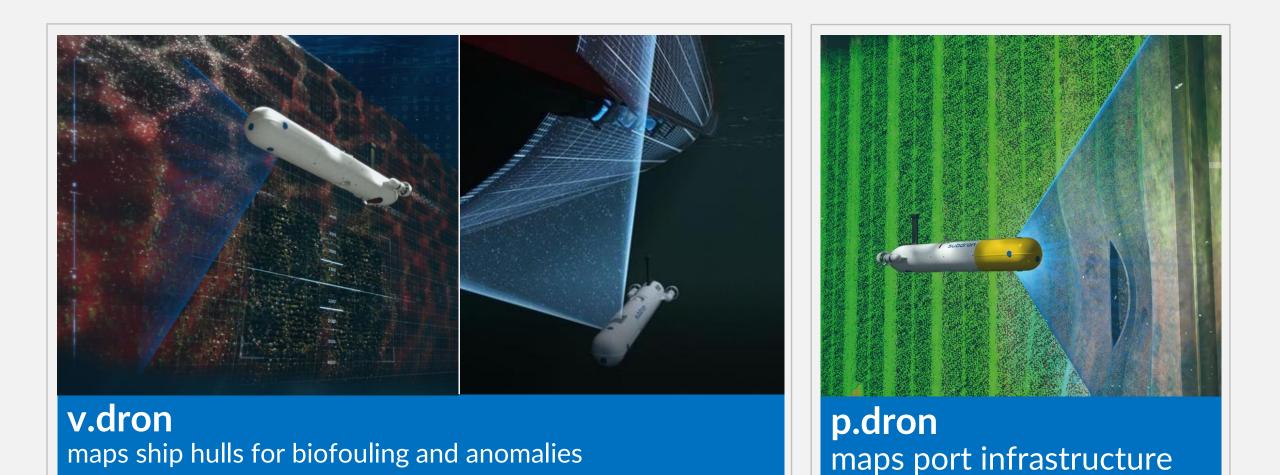
5x faster inspection time

50% lower cost to inspect

Less human intervention in challenging environments

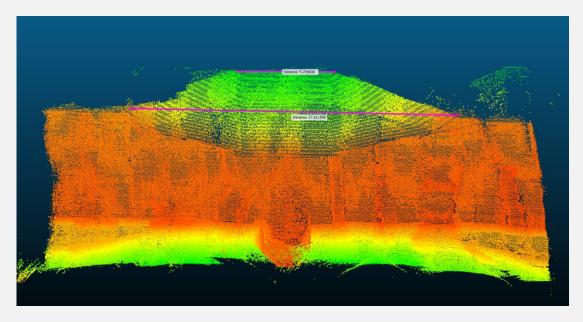
SAFETY AND RELIABILITY

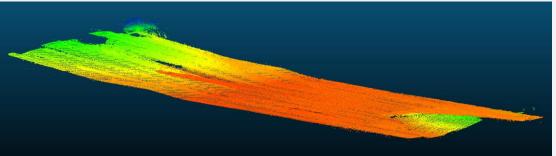

High quality results in low visibility conditions

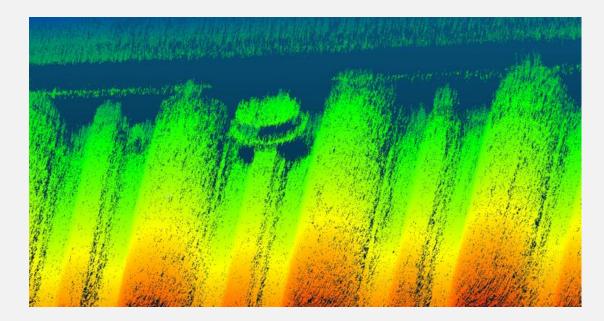

Predictive maintenance possible for the first time

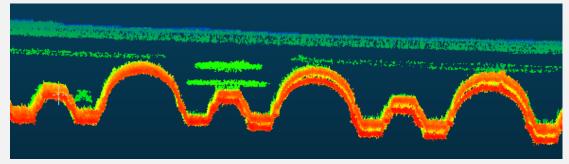
VALUE FOR THE END USERS

Inspection Companies and Ship or Port Operators

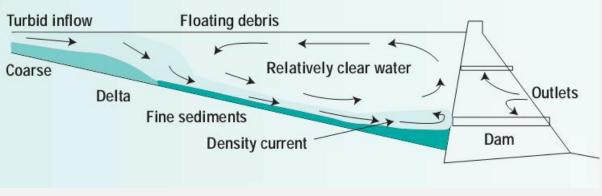



TWO MAIN SOLUTIONS


PREVIOUS RESULTS


Ship Inspection - v.dron

Port Inspection - p.dron



THE CHALLENGE OF SEDIMENT ACCUMULATION

- Hydropower-generated energy is reliability and flexibility.
- Energy production
 - 31,5% United States of America,
 - 29,0% European Union.
- By 2050 the capacity loss will be 26%
 - Current loss is 16%
- Sediments accumulation:
 - Reduce life span and capacity of a reservoir,
 - Damage water intakes and reduce power production,
 - Block water intakes,
 - Forcing Re-designs of the infrastructure.

HOW IT'S CURRENTLY DONE

- Currently are used
 - Surface vessels (manned or unmanned)
 - MBES,
 - Sediment Sampler.
 - Moored sensors
 - ADCP sensor,
 - Sediment trap.
- These measurements may not be enough:
 - detailed around the intake and outlets,
 - to measure the evolution of gravity currents,
 - to capture the interaction of movable reservoir ground and the turbidity current.

EchoBoat ASV Source: Aspectsurveys

Enviro Sensor Source: Aspectsurveys

Marine Sensor Source: Aspectsurveys

AUV FOR SEDIMENTATION MEASUREMENTS

- Advantages AUV:
 - Sensor closer to the target areas -> Higher resolution
 - Constant measurements along the water column
- Challenges
 - No global positioning
 - Reduced communications underwater

- Subdron and ETH Zurich will characterize the environment:
 - ADCP (Acoustic Doppler Current Profiler) measurements:
 - Signal-to-Noise Ratio (SNR) to measure Suspended Sediment Concentration (SSC).
 - High-resolution bathymetry obtained with MBES measurement:
 - Calculate sediment accumulation map,
 - Study the interaction and erosional/depositional processes.

MISSION ENVIRONMENT

Gigerwaldsee - Switzerland

- Built between 1973 and 1975 in the canton of St. Gallen, Switzerland,
- Sedimentation has been an ongoing issue at Gigerwald reservoir for years, especially close to the dam,
- Average annual sedimentation volume of 60,000 m³ and an accumulated storage volume loss of 5% since start of operation¹,
- Rising at an average annual rate of around 0.5 m between 2003 and 2023,
- The sediment level at the dam reached the intake in 2020².
- During winter 2024 until Summer2025 adaptation works to rise the low-level outlet and the headrace tunnel 20m and 25m.

Aerial view of Gigerwald reservoir in October 1983 (Comet Photo AG / ETH Library Zurich, Image Archive / Com_FC27-0016-002.tif / CC BY-SA 4.0)

¹ Müller & De Cesare (2009)

2 Schmid (2024)

MISSION PREPARATION - EQUIPMENT

AUV - SPARUS II AUV (IQUA Robotics)

- GNSS Antenna with RTK
- USBL receiver
- Sound Velocity Sensor
- MBES Imagenex Delta-T 260 KHz
- Pressure sensor
- DVL with ADCP Capabilities

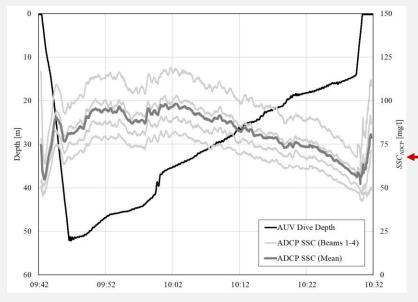
Surface Boat

- GNSS Antenna with RTK
- USBL transceiver
- Sediment Sampler
 - Van Dorn bottle sampler

MISSION PREPARATION

- Thalweg following trajectory:
 - Altitude of 15-20m
 - Speed 0,4 m/s
 - Depth 15m to 80m
 - Tracks 1 km
- Vertical Sampling (AUV and Sampler):
 - 5-10 vertical samples,
 - from surface to 15 m altitude
- Data Collected:
 - MBES
 - ADCP





PRELIMINARY RESULTS

Data Colleted

- 2 Campaigns (June & July)
- Thalweg following trajectory
 - 6 km track
 - Resolution between 0,05m 0,1m
- Vertical Sampling
 - 10 vertical samples in strategic locations
 - vertical speed of 0.20 m/s

CONCLUSIONS

- AUVs have great potential to complement standard approaches
 - measuring sedimentation processes in reservoirs,
 - increase spatial and temporal data resolution.
- Two field campaigns were successfully made in the Gigerwarld Alpine reservoir,
 - Gigerwald reservoirs highly impacted by sedimentation.
- Preliminary results provide insights into the measurement capabilities
 - AUVs in terms of high-resolution bathymetric scans and
 - Measurement of suspended sediment concentration in the water column.

FUTURE WORK

- Analysis of the data collected and comparison of multiple campaigns.
- During the two campaigns different aspects need to be improved on the AUV
 - Localization system for the surface boat
 - Stable positioning
 - Subdron Relative Object Navigation (RON) could be applied for thalweg following.
 - Inclusion of Turbidity Sensor or Laser In-Situ Scattering and Transmissometry (LISST) sensor
- Mapping of the Sedimentation around the Water Intake
 - Adaptation of RON to map the surroundings of the Water Intake

subdron GmbH Hoheneggerstrasse 14 | 6923 Lauterach | Austria | +43 664 923 8226 info@subdron.com | www.subdron.com

SUBBCIESSION WWW.subdron.com