

Underwater laser scanning: Integration and testing on a survey vessel

Hydro 2024

Annika L. Walter, M.Sc.

HafenCity Universität Hamburg

Motivation

Advantages of the new underwater laser scanner

- Higher accuracy and resolution in comparison to acoustic instruments
 - Precision in the range of millimeters
 - Sensor outperforms conventional sonar systems by a factor of 10
 - More accurate and detailed capture of objects
- Usage of ToF
 - Range in turbid waters is three times larger compared to other optical systems
- Delivers a full waveform
 - Derivation of more information compared to a single pulse return
 - Habitat Mapping, detection and analysis of underwater vegetation etc.
- \rightarrow Testing the performance in different water bodies (turbidity)
- \rightarrow Comparison of ULi to acoustic instruments (ULi vs. MBES)

Survey Vessel: DVocean

- Size (L x W x H): 8 m x 2.55 m x 2.8 m (trailerable), max. draught: 0.875 m
- Area of use: Shallow water area (inland waters, coastal areas)
- 3 computer workstations
- 3 poles (holders for underwater instruments)
- Possibility to deploy probes and towed sensors

DVocean: Hydrographic Equipment

Underwater laser scanning: Integration and testing on a survey vessel

DVocean: Mounting of ULi

Considerations

- Lateral mounting on the port side pole to gather reflections from infrastructure elements such as brige foundations or quay walls
- Construction of a stable frame which can be screwed onto the plate of the side pole to allow for a flexible mounting and demounting procedure of ULi
- Quick lowering and raising of ULi into the water by folding down the pole with a leash
- Use of tensioning straps to minimize the movement of the pole in the water due to e.g. currents

DVocean: Calibration of ULi

- Calibration of the ULi by Jannis Gangelhoff from the Fraunhofer IPM
- Determination of the coordinates by using a Leica Absolute lasertracker and spherical mounted reflectors
- Integration into the ship coordinate system using the fixed based adapters on board of the DVocean

[© Fraunhofer IPM, 2024]

DVocean: Hardware Installation of ULi

- Processing Unit of ULi inside the ship
- Backside with 3 cable connection inputs:
 - 1 x to 24 V power supply
 - 1 x Ethernet to Switch
 - 1 x proprietary blue cable to the sensor for power supply and data transmission
- Frontside with:
 - Pressure switch
 - Lock to start the scanner in 3B mode
 - Laser On Lamp
 - Power OFF / ON switch

HafenCity Universität Hamburg

DVocean: Network Integration of ULi

DVocean: Time Synchronisation of ULi

- Objective:
 - Time synchronisation via Precise Time Protocol (PTP) in the local ship network
- Realization:
 - Hardware:
 - Ublox EVK-M8T evaluation kit (GNSS receiver) to provide PPS via an RS232 serial port
 - Raspberry Pi 5 Model B Rev 1.0 to generate a PTP signal
 - Software:
 - Ubuntu Time Server with several software packages including gpsd, chronyd and linuxptp

DVocean: Time Synchronisation of ULi

Underwater laser scanning: Integration and testing on a survey vessel

DVocean: Time Synchronisation of ULi

• Software timestamping resulting in:

РТР	NTP Pi	NTP AsteRx
≈ 80 µs	≈ 347 µs	≈ 15 ms

 Current issues in the integration of the PTP server into the backend of the ULi software leads to the usage of NTP

				ciam-	XMG: Fri Oct 25 11:41:15 2024
<pre> Source mode '^' = server / Source state '*' = currer / 'x' = may be in Reachability register Log2(Polling interval) MS Name/IP address Str</pre>	r, '= nt be: n erro (octa \ atum	' = st, or, l) - Poll	peer, '+' = ' '~' = '	'#' = combin too va LastR	local clock. ed, '-' = not combined, riable, '?' = unusable. xxxx [yyyy] +/- zzzz xxxx = adjusted offset, yyyy = measured offset, zzzz = estimated error. x Last sample
======================================	1	2	377	====== 7	+22us[+27us] +/- 80us
prou-mep-s.mep1.pss.cano>	2	U	211	21	-11115 -1115 - 2/195
<pre>^- prod-ntp-3.ntp1.ps5.cano></pre>	2	7	377	119	-6734us[-6744us] +/- 27ms
<pre>^- prod-ntp-4.ntp4.ps5.cano></pre>	2	7	377	119	-8737us[-8746us] +/- 38ms
^- alphyn.canonical.com	2	7	377	119	+36ms[+36ms] +/- 112ms
^- 64:ff9b::6bbd:c62	3	7	377	121	-7191us[-7192us] +/- 27ms
^- 64:ff9b::b90d:9447	2	7	377	124	-12ms[-12ms] +/- 22ms
^- 2a01:4f8:121:1061::2	2	7	377	125	+13ms[+13ms] +/- 53ms
^- dc8wan.de	2	7	377	59	-9059us[-9105us] +/- 42ms
192 168 A 1A4	٥	٩	۵	-	
N- 192 168 36 166	1	7	377	55	-120us[-131us] +/- 347us
192.108.30.100		-	277	40	

DVocean: First test survey of ULi

• Survey on 25.10.2024 in the Tiefstackkanal / Hamburg

- Lock seperates the area from the main channel of the Elbe
- Less sediment entry and lower amount of salinity offer the chance for clearer water conditions with less turbidity

DVocean: First test survey of ULi

- Measurement of turbidity prior to the survey using the AML-3 Logger and a secchi disk
- Probe results:
 - Ø Turbidity: 6 NTU
 - Secchi Depth: 1.10 m
- Remarks:
 - Higher clearance in comparison to the main channel:
 - Ø Turbidity: 8.6 NTU
 - Secchi Depth: 0.79 m
 - Higher clearance expected in spring

DVocean: First test survey of ULi

• Survey along mooring dolphins, a laying brage and bridge foundations

Underwater laser scanning: Integration and testing on a survey vessel

DVocean: Impressions from the test survey

Underwater laser scanning: Integration and testing on a survey vessel

DVocean: Data acquisition with PC

- Input data rate: Up to 100.000 points per second
- Rack PC with:
 - IP54 protection class on the front panel
 - IP20 protection class
 - Vibration dampers for shock protection
 - Cooling Fan 60 mm
 - 64 GB RAM
 - CPU Core i7-14700

DVocean: Data acquisition software of ULi

- Colour Bar indicates the status of the Laser
- Specify certain parameters i.e. max distance
- Select Filter Mode:
 - Adjustment (Laser class 2 M)
 - Medium (Laser class 3 B)
 - None (Laser class 3 B)
- Set the Laser Pattern:
 - Circular
 - Linear
- Start the measurement

		UL
		Full v
Control		
Max distance [m in wat	er] 22 🗘	
Skip distance [m in wat	er] 6 🔍	
Skip pulses 0	٢	
Estimated data rate: 223 Pulse rate: 100.00 kHz	MB/s	
Filter none	~	
Laser pattern:		
• Circle 🔾 Line		
Motor speed [Hz] 1	\$	
Radius change speed [iz] 0.01	
Radius [01] 0	0	
Mission name (optiona	0	
Recording enabled		
Start full waveform	Stop Set as default	
Reset errors		
Status		
Sender	Message	
FileWriter:Infos	not recording, space availa	ble: 1212.05 GiB
Monitor:Supply	Voltage: 22.988 V,Current: 1	1.686 A,Power: 38.760 W
Motor_Phase_Control:	itate homing	
TimeMaschine:Time	Synchronized	

DVocean: Data acquisition software of ULi

- Displayed Signals:
 - Red: Internal Reference Signal
 - Blue:
 Less sensitive channel
 - Green:

Sensitive channel: Attenuation of the

signal by factor 10

DVocean: Data acquisition and processing - Motion

- iXBlue MultiLogger software to record the raw motion data from the motion sensor Hydrins
- Combination of the point cloud from ULi and the respective trajectory from the motion data in the post-processing

Therefore:

- Smoothing (green) of the trajactories under bridges (blue) using a Kalman Backward (purple) - and Forward (green) Filter using Delph INS
- Export the trajectory to a text-based Ascii file with time, position and orientation
- Ascii file can be imported into the post-processing software of ULi

HafenCity Universität

- Replay of the recorded data
- Waveforms:
 - Red:

Internal Reference Signal

• Blue:

Less sensitive channel

• Green:

Sensitive channel:

Attenuation of the

signal by factor 10

Underwater laser scanning: Integration and testing on a survey vessel

HafenCity Jniversität

Top View Circular Scan Pattern

Side View Circular Scan Pattern

HafenCity

Side View Line Scan Pattern

HafenCity

Jniversitä

Top View Circular Scan Pattern

Side View Circular Scan Pattern

DVocean: Point Cloud of ULi in CloudCompare

- DVocean passed the objects of interested with a distance of min. 1 m 2 m
- Average depth between 2.5 m 3.5 m
- Scattering of the point cloud: varying distance

DVocean: Point Cloud of ULi in CloudCompare

• Single reflections in a distance of 3.17 m

DVocean: Point Cloud of ULi from Surface Vehicle

Underwater laser scanning: Integration and testing on a survey vessel

HafenCity Universität Hamburg

Outlook

- Varying water bodies (turbidity)
- Detection of objects with different surface properties
- Combination with other sensors
- Fusion with data from other sensors to gain maximum insights
- Operation on unmanned vehicles to get close to objects and to capture the land water transition zone
- Development of a field calibration method

Thank you very much!

Hydro 2024

Annika L. Walter, M.Sc.

